skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rossman, Thea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Altınbüken, Deniz; Stutsman, Ryan (Ed.)
    In the 1990s, many networks deployed performance-enhancing proxies (PEPs) that transparently split TCP connections to aid performance, especially over lossy, long-delay paths. Two recent developments have cast doubts on their relevance: the BBR congestion-control algorithm, which de-emphasizes loss as a congestion signal, and the QUIC transport protocol, which prevents transparent connection-splitting yet empirically matches or exceeds TCP’s performance in wide deployment, using the same congestion control. In light of this, are PEPs obsolete? This paper presents a range of emulation measurements indicating: “probably not.” While BBR’s original 2016 version didn’t benefit markedly from connection-splitting, more recent versions of BBR do and, in some cases, even more so than earlier “loss-based” congestion-control algorithms. We also find that QUIC implementations of the “same” congestion-control algorithms vary dramatically and further differ from those of Linux TCP—frustrating head-to-head comparisons. Notwithstanding their controversial nature, our results suggest that PEPs remain relevant to Internet performance for the foreseeable future. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026